Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1211, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017066

RESUMEN

3D spheroids have emerged as powerful drug discovery tools given their high-throughput screening (HTS) compatibility. Here, we describe a method for generating functional neural spheroids by cell-aggregation of differentiated human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes at cell type compositions mimicking specific regions of the human brain. Recordings of intracellular calcium oscillations were used as functional assays, and the utility of this spheroids system was shown through disease modeling, drug testing, and formation of assembloids to model neurocircuitry. As a proof of concept, we generated spheroids incorporating neurons with Alzheimer's disease-associated alleles, as well as opioid use disorder modeling spheroids induced by chronic treatment of a mu-opioid receptor agonist. We reversed baseline functional deficits in each pilot disease model with clinically approved treatments and showed that assembloid activity can be chemogenetically manipulated. Here, we lay the groundwork for brain region-specific neural spheroids as a robust functional assay platform for HTS studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Encéfalo , Diferenciación Celular/fisiología , Neuronas , Ensayos Analíticos de Alto Rendimiento/métodos
2.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37669225

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Asunto(s)
Antivirales , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/uso terapéutico , Bioensayo
3.
PLoS One ; 17(8): e0272364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947606

RESUMEN

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Asunto(s)
Bacteriófagos , COVID-19 , Anticuerpos de Dominio Único , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Bacteriófagos/metabolismo , Humanos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
4.
Commun Biol ; 5(1): 810, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962146

RESUMEN

There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus de la Influenza A , Gripe Humana , Antivirales/farmacología , Antivirales/uso terapéutico , Quimiocinas , Epitelio , Humanos , Virus de la Influenza A/fisiología , Gripe Humana/tratamiento farmacológico , Pulmón , SARS-CoV-2 , Replicación Viral
5.
bioRxiv ; 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34729560

RESUMEN

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.

7.
bioRxiv ; 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34013274

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third coronavirus in less than 20 years to spillover from an animal reservoir and cause severe disease in humans. High impact respiratory viruses such as pathogenic beta-coronaviruses and influenza viruses, as well as other emerging respiratory viruses, pose an ongoing global health threat to humans. There is a critical need for physiologically relevant, robust and ready to use, in vitro cellular assay platforms to rapidly model the infectivity of emerging respiratory viruses and discover and develop new antiviral treatments. Here, we validate in vitro human alveolar and tracheobronchial tissue equivalents and assess their usefulness as in vitro assay platforms in the context of live SARS-CoV-2 and influenza A virus infections. We establish the cellular complexity of two distinct tracheobronchial and alveolar epithelial air liquid interface (ALI) tissue models, describe SARS-CoV-2 and influenza virus infectivity rates and patterns in these ALI tissues, the viral-induced cytokine production as it relates to tissue-specific disease, and demonstrate the pharmacologically validity of these lung epithelium models as antiviral drug screening assay platforms.

8.
Bioorg Med Chem Lett ; 40: 127906, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33689873

RESUMEN

Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.


Asunto(s)
Antivirales/farmacología , Niclosamida/análogos & derivados , Niclosamida/farmacología , SARS-CoV-2/efectos de los fármacos , Virus Zika/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Sitios de Unión , Chlorocebus aethiops , Estabilidad de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Niclosamida/metabolismo , Unión Proteica , Ratas , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
9.
Nat Biotechnol ; 39(6): 747-753, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33623157

RESUMEN

Computational approaches for drug discovery, such as quantitative structure-activity relationship, rely on structural similarities of small molecules to infer biological activity but are often limited to identifying new drug candidates in the chemical spaces close to known ligands. Here we report a biological activity-based modeling (BABM) approach, in which compound activity profiles established across multiple assays are used as signatures to predict compound activity in other assays or against a new target. This approach was validated by identifying candidate antivirals for Zika and Ebola viruses based on high-throughput screening data. BABM models were then applied to predict 311 compounds with potential activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of the predicted compounds, 32% had antiviral activity in a cell culture live virus assay, the most potent compounds showing a half-maximal inhibitory concentration in the nanomolar range. Most of the confirmed anti-SARS-CoV-2 compounds were found to be viral entry inhibitors and/or autophagy modulators. The confirmed compounds have the potential to be further developed into anti-SARS-CoV-2 therapies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Ensayos Analíticos de Alto Rendimiento/métodos , SARS-CoV-2/efectos de los fármacos , COVID-19/genética , COVID-19/virología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , SARS-CoV-2/patogenicidad
10.
Genomics Proteomics Bioinformatics ; 19(1): 108-122, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610792

RESUMEN

The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus-host protein-protein interaction networks can reveal cellular pathways critical to viral replication and disease pathogenesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as critical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for further studies of flavivirus-host interactions, disease pathogenesis, and new drug targets.


Asunto(s)
Virus del Dengue , Dengue/genética , Complejo de la Endopetidasa Proteasomal , Infección por el Virus Zika , Virus Zika , Virus del Dengue/genética , Virus del Dengue/fisiología , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Biología de Sistemas , Replicación Viral , Virus Zika/genética , Virus Zika/fisiología , Infección por el Virus Zika/genética
11.
Bioorg Chem ; 104: 104205, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32916389

RESUMEN

Zika virus (ZIKV) infection represents a significant threat to the global health system, and the search for efficient antivirals to ZIKV remains necessary and urgent. In this study, we extended the exploration of our previously discovered scaffold of 1H-pyrrolo[1,2-c]imidazol-1-one and revealed that two trans isomers of compounds 2 and 7 and one mixture with major trans isomer of compound 3 as novel tetrahydroquinoline-fused imidazolone derivatives are active against ZIKV infection but they are not virucidal. Western Blot and ELISA analyses of ZIKV NS5 and NS1 further demonstrate that compounds of (±)-2, (±)-3 and (±)-7 act as effective agents against ZIKV infection. We show that the N10's basicity is not the basic requirement for these compounds' antiviral activity in the current work. Importantly, tuning of some pharmacophores including substituents at arene can generate promising candidates for anti-ZIKV agents.


Asunto(s)
Antivirales/farmacología , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/química , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Células Vero , Proteínas no Estructurales Virales/análisis , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Infección por el Virus Zika/metabolismo
12.
bioRxiv ; 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32766591

RESUMEN

The recent global pandemic caused by the new coronavirus SARS-CoV-2 presents an urgent need for new therapeutic candidates. While the importance of traditional in silico approaches such as QSAR in such efforts in unquestionable, these models fundamentally rely on structural similarity to infer biological activity and are thus prone to becoming trapped in the very nearby chemical spaces of already known ligands. For novel and unprecedented threats such as COVID-19 much faster and efficient paradigms must be devised to accelerate the identification of new chemical classes for rapid drug development. Here we report the development of a new biological activity-based modeling (BABM) approach that builds on the hypothesis that compounds with similar activity patterns tend to share similar targets or mechanisms of action. In BABM, compound activity profiles established on massive scale across multiple assays are used as signatures to predict compound activity in a new assay or against a new target. We first trained and validated this approach by identifying new antiviral lead candidates for Zika and Ebola based on data from ~0.5 million compounds screened against ~2,000 assays. BABM models were then applied to predict ~300 compounds not previously reported to have activity for SARS-CoV-2, which were then tested in a live virus assay with high (>30%) hit rates. The most potent compounds showed antiviral activities in the nanomolar range. These potent confirmed compounds have the potential to be further developed in novel chemical space into new anti-SARS-CoV-2 therapies. These results demonstrate unprecedented ability using BABM to predict novel structures as chemical leads significantly beyond traditional methods, and its application in rapid drug discovery response in a global public health crisis.

13.
bioRxiv ; 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511420

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

14.
J Pharmacol Exp Ther ; 374(3): 500-511, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32532853

RESUMEN

High-throughput cell-based fluorescent imaging assays often require removal of background fluorescent signal to obtain robust measurements. Processing high-density microplates to remove background signal is challenging because of equipment requirements and increasing variation after multiple plate wash steps. Here, we present the development of a wash-free cell-based fluorescence assay method for high-throughput screening using a laser scanning fluorescence plate cytometer. The cytometry data consisted of cell count and fluorescent intensity measurements for phenotypic screening. We obtained robust screening results by applying this assay methodology to the lysosomal storage disease Niemann-Pick disease type A. We further demonstrated that this cytometry method can be applied to the detection of cholesterol in Niemann-Pick disease type C. Lastly, we used the Mirrorball method to obtain preliminary results for the detection of Zika and Dengue viral envelope protein. The advantages of this assay format include 1) no plate washing, 2) 4-fold faster plate scan and analysis time, 3) high throughput, and 4) >10-fold smaller direct data files. In contrast, traditional imaging assays require multiple plate washes to remove the background signal, long plate scan and data analysis times, and large data files. Therefore, this versatile and broadly applicable Mirrorball-based method greatly improves the throughput and data quality of image-based screening by increasing sensitivity and efficiency while reducing assay artifacts. SIGNIFICANCE STATEMENT: This work has resulted in the development of broadly applicable cell-based fluorescence imaging assays without the requirement of washing out reagents to reduce background signal, which effectively decreases the need for extensive plate processing by the researcher. We demonstrate this high-throughput method for drug screening against lysosomal storage diseases and a commonly used viral titer assay.


Asunto(s)
Bioensayo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Células Cultivadas , Dengue/virología , Virus del Dengue/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Fluorescencia , Humanos , Proteínas del Envoltorio Viral/metabolismo , Virus Zika/metabolismo , Infección por el Virus Zika/virología
15.
Front Microbiol ; 11: 598203, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424801

RESUMEN

The 2015 to 2016 outbreak of Zika virus (ZIKV) infections in the Americas coincided with a dramatic increase in neurodevelopmental abnormalities, including fetal microcephaly, in newborns born to infected women. In this study, we observed mitochondrial fragmentation and disrupted mitochondrial membrane potential after 24 h of ZIKV infection in human neural stem cells and the SNB-19 glioblastoma cell line. The severity of these changes correlated with the amount of ZIKV proteins expressed in infected cells. ZIKV infection also decreased the levels of mitofusin 2, which modulates mitochondria fusion. Mitochondrial division inhibitor 1 (Mdivi-1), a small molecule inhibiting mitochondria fission, ameliorated mitochondria disruptions and reduced cell death in ZIKV-infected cells. Collectively, this study suggests that abnormal mitochondrial fragmentation contributes to ZIKV-induced neuronal cell death; rebalancing mitochondrial dynamics of fission-fusion could be a therapeutic strategy for drug development to treat ZIKV-mediated neuronal apoptosis.

16.
Eur J Med Chem ; 187: 111925, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838328

RESUMEN

The Zika endemic established by imported and local transmission is of significant concern and effective anti-ZIKV drugs remain an urgent unmet need. As andrographolide was identified to be an inhibitor of DENV and CHIKV and the importance of quinoline structure against infectious diseases was considered, we are interested in studying its andrographolide derivatives with quinoline moiety against Zika virus infection. In addition to screening eight in-house derivatives of andrographolide, sixteen new derivatives were designed, synthesized and tested against Zika virus infection. Among these compounds, two most potent anti-Zika compounds of 19-acetylated 14α-(5',7'-dichloro-8'-quinolyloxy) derivative 17b and 14ß-(8'-quinolyloxy)-3,19- diol derivative 3 with the highest selectivity were discovered. The SAR analysis indicates that rational and optimal combined modification/s at 3-, 14-, or 19-positions can make derivatives less toxic and more potent against Zika infection, and both of 3 and 17b are suitable as leads for designing new generation of andrographolide derivatives with quinoline or its structure- and property-related moieties against Zika virus and other arboviruses.


Asunto(s)
Antivirales/farmacología , Diterpenos/síntesis química , Diterpenos/farmacología , Diseño de Fármacos , Descubrimiento de Drogas , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Diterpenos/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Inorg Chem ; 58(16): 11231-11240, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31369254

RESUMEN

A family of 17 iron(III) aminobis(phenolate) complexes possessing different phenolate substituents, coordination geometries, and donor arrangements were used as catalysts for the reaction of carbon dioxide (CO2) with epoxides. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of the iron complexes with a bis(triphenylphosphine)iminium chloride cocatalyst in negative mode revealed the formation of six-coordinate iron "ate" species. Under low catalyst loadings (0.025 mol % Fe and 0.1 mol % chloride cocatalyst), all complexes showed good-to-excellent activity for converting propylene oxide to propylene carbonate under 20 bar of CO2. The most active complex possessed electron-withdrawing dichlorophenolate groups and for a 2 h reaction time gave a turnover frequency of 1240 h-1. Epichlorohydrin, styrene oxide, phenyl glycidyl ether, and allyl glycidyl ether could also be transformed to their respective cyclic carbonates with good-to-excellent conversions. Selectivity for polycarbonate formation was observed using cyclohexene oxide, where the best activity was displayed by trigonal-bipyramidal iron(III) complexes having electron-rich phenolate groups and sterically unencumbering tertiary amino donors. Those containing bulky tertiary amino ligands or those with square-pyramidal geometries around iron showed no activity for polycarbonate formation. While the overall conversions declined with decreasing CO2 pressure, CO2 incorporation remained high, giving a completely alternating copolymer. The difference in the optimum catalyst reactivity for cyclic carbonate versus polycarbonate formation is particularly noteworthy; that is, electron-withdrawing-group-containing phenolates give the most active catalysts for propylene carbonate formation, whereas catalysts with electron-donating-group-containing phenolates are the most active for polycyclohexene carbonate formation. This study demonstrates that the highly modifiable aminophenolate ligands can be tailored to yield iron complexes for both CO2/epoxide coupling and ring-opening copolymerization activity.

18.
Assay Drug Dev Technol ; 17(3): 128-139, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30958701

RESUMEN

Zika virus has recently emerged as a worldwide pathogen and public health burden due to its rapid spread and identification as a causative agent for multiple neurological defects, including congenital microcephaly. While there has been a flurry of recent research to address this emerging pathogen, there are currently no approved drug treatments for ZIKV infection. The gold standard for testing antiviral activity is to quantify infectious virion production. However, current infectious viral production assays, such as the plaque-forming or focus-forming unit assay, are tedious and labor intensive with a low-screening throughput. To facilitate drug development, we developed a Zika viral titration assay using an automated imaging system and an image analysis algorithm for viral colony quantification. This assay retained the principle of the classical virus titer assay, while improving workflow and offering higher screening throughput. In addition, this assay can be broadly adapted to quantification of other viruses.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Carga Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Algoritmos , Antivirales/química , Automatización , Humanos , Pruebas de Sensibilidad Microbiana , Imagen Óptica , Células Tumorales Cultivadas
19.
Transl Oncol ; 12(3): 441-452, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30576957

RESUMEN

Heterogeneous response to chemotherapy is a major issue for the treatment of cancer. For most gynecologic cancers including ovarian, cervical, and placental, the list of available small molecule therapies is relatively small compared to options for other cancers. While overall cancer mortality rates have decreased in the United States as early diagnoses and cancer therapies have become more effective, ovarian cancer still has low survival rates due to the lack of effective treatment options, drug resistance, and late diagnosis. To understand chemotherapeutic diversity in gynecologic cancers, we have screened 7914 approved drugs and bioactive compounds in 11 gynecologic cancer cell lines to profile their chemotherapeutic sensitivity. We identified two HDAC inhibitors, mocetinostat and entinostat, as pan-gynecologic cancer suppressors with IC50 values within an order of magnitude of their human plasma concentrations. In addition, many active compounds identified, including the non-anticancer drugs and other compounds, diversely inhibited the growth of three gynecologic cancer cell groups and individual cancer cell lines. These newly identified compounds are valuable for further studies of new therapeutics development, synergistic drug combinations, and new target identification for gynecologic cancers. The results also provide a rationale for the personalized chemotherapeutic testing of anticancer drugs in treatment of gynecologic cancer.

20.
Cell Discov ; 4: 31, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872540

RESUMEN

The re-emergence of Zika virus (ZIKV) and Ebola virus (EBOV) poses serious and continued threats to the global public health. Effective therapeutics for these maladies is an unmet need. Here, we show that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC50) in vitro and potent activity in vivo. Two mechanisms of action for emetine are identified: the inhibition of ZIKV NS5 polymerase activity and disruption of lysosomal function. Emetine also inhibits EBOV entry. Cephaeline, a desmethyl analog of emetine, which may be better tolerated in patients than emetine, exhibits a similar efficacy against both ZIKV and EBOV infections. Hence, emetine and cephaeline offer pharmaceutical therapies against both ZIKV and EBOV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...